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Session Scope 
•  What this will cover 

–  Overview of actuator-disk models for rotorcraft 
–  Overview of setup for “first principles” articulated-blade rotorcraft 

simulations using overset grids 
•  Rigid Blades 
•  Elastic Blades / Loose Coupling to Rotorcraft Comprehensive Codes 

•  What will not be covered 
–  Rotorcraft Comprehensive Code set up and operation 
–  All the many critical setup details for the “first principles” approach 

•  What should you already know 
–  Basic time-accurate and dynamic-mesh solver operation and control 
–  Rudimentary rotorcraft aeromechanics (collective, cyclic…) 
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Introduction 
•  Background 

–  FUN3D can model a rotor with varying levels of fidelity/complexity 
•  Actuator disk – low-fidelity representation of the rotor - when only the 

overall rotor influence on the configuration is needed 
•  Articulated-blade system (cyclic pitch, flap, lead-lag), with or without 

aeroelastic effects – if detailed rotor airloads are needed 
•  Rotating noninertial frame – steady-state problem for rigid, isolated, 

fixed-pitch blades 
–  Aeroelastic effects require coupling with a rotorcraft “comprehensive” 

analysis (CA) code 
•  CA solver can also provide rotor trim 

•  Compatibility 
–  Coupled to CAMRAD II, DYMORE (Open Source) and RCAS CA codes 

•  Status 
–  Less experience / testing with RCAS than with CAMRAD II / DYMORE 
–  Interface provided for US Army’s HELIOS rotorcraft framework 
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Time-Averaged Actuator-Disk Simulations (1/3) 
•  Actuator disk method utilizes momentum and energy equation source terms 

to represent the influence of the disk 
– Original implementation by Dave O’Brien (GIT Ph.D. Thesis) 
– HI-ARMS implementation (SMEMRD) by Dave O’Brien ARMDEC adds 

trim and ability to use C81 airfoil tables (Not covered ) 
•  Simplifies grid generation – actuator disk is automatically embedded in 

computational grid  
•  Grid refinement in the vicinity of actuator surface improves accuracy - cell 

sizes of “background” grid should be similar to cell sizes of actuator disk 
•  Any number of actuator disks can be modeled 
•  Requires the --rotor  command line option for standard actuator disk 
•  For SMEMRD, use hiarms_flag=.true. in &hiarms_actuator_disk 

namelist (fun3d.nml) - user must request SMEMRD; not in FUN3D 
distribution 
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Time-Averaged Actuator-Disk Simulations (2/3) 
•  Different disk loading models available 

–  RotorType = 1 actuator disk 
•  LoadType = 1 constant Δp (specified thrust coefficient CT) 
•  LoadType = 2 linearly increasing Δp to blade tip (specified CT ) 
•  LoadType = 3 blade element based (computed CT ) 
•  LoadType = 4 user specified sources, not recommended 
•  LoadType = 5 CT and CQ radial distributions provided in a file 
•  LoadType = 6 Goldstein distribution with optional swirl (specified CT 

and CQ) 
–  RotorType = 2 actuator blades (time-accurate) Not Functional 
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Time-Averaged Actuator-Disk Simulations (3/3) 
•  Actuator disk implementation compatible with the standard steady-state 

flow solver process (compressible and incompressible) 
– Standard grid formats for the volume grids 
– Standard solver input deck (fun3d.nml)  
– Standard output is available (project.forces, 
project_hist.dat, project_tec_boundary.plt)  

– Expect similar solution convergence as a standard steady-state case 
•  Screen output includes “Rotor Force Summary” info at each iteration 

•  Standard actuator disk model is activated in the command line by        
-–rotor 

– Rotor input deck file (rotor.input) is required in the local directory 
– rotor.input contains disk geometry and loading specifications 
– The disk geometry and loading are output in plot3d format in files 
source_grid_iteration#.p3d and 
source_data_iteration#.p3d 
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 rotor.input File 
•  Constant/linear loading needs only a subset of the data in the file data 

(manual defines variables) 
  # Rotors   Uinf/Uref  Write Soln   Force Ref  Moment Ref    ! Below we set Uref = Uinf 
         1       1.000        1500    0.001117    0.001297    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Utip/Uref = 1/AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           2          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
     0.696         0.0       0.322        0.00        -0.0        0.00 
 Utip/Uref  ThrustCoff  TorqueCoff        psi0 PitchHing/R      DirRot 
     19.61      0.0064        0.00         0.0         0.0           0 
  # Blades   TipRadius  RootRadius  BladeChord FlapHinge/R  LagHinge/R 
         4       0.861       0.207       0.066       0.051       0.051 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
       0.0        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      0.00        0.00        0.00        0.00           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 
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Key: 
Required for constant/linear actuator disk 
Addt’l data for blade element or “first 
principles” simulations 
(all items must have a value, even if 
unused)   
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Robin Fuselage with Actuator Disk  
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Green: surface mesh from  
FUN3D input mesh 

Red: disk mesh generated with resolution 
#Radial x #Normal (azimuthal!!) from rotor.input 
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Incompressible Robin/Actuator Disk 
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Advance Ratio = 0.051 (Uinf/Utip) 
Thrust coefficient CT = 0.0064 
Angle of attack = 0o Shaft angle = 0o 
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Articulated-Blade Simulations 
•  “First Principles” – rotor flow is computed, not modeled 

–  Requires moving, overset grids; blades may be rigid or elastic 
•  Elastic-blade cases must be coupled to a rotorcraft CA (aka Computational 

Structural Dynamics, CSD) code such as CAMRAD, DYMORE or RCAS 
– The CA code provides trim solution in addition to blade deformations  
– The “interface” to CAMRAD is through standard OVERFLOW 
rotor_N.onerev.txt and motion.txt type files - translator codes 
are maintained and distributed by Dr. Doug Boyd, NASA Langley 
(contact d.d.boyd@nasa.gov) 

– The interface to DYMORE is similar, through DeltaAirloads.dat, 
DymoreTotalAirloads.dat and Deflections.dat type files       
- interface codes are maintained by Prof. Olivier Bauchau, U. Maryland 

– RCAS coupling does not require any translator codes (RCAS API) 
– FUN3D has postprocessing utility codes (utils/Rotorcraft/) 
– Many small details - we will not have time to cover 
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CFD/CA – Loose (Periodic) Coupling 
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Coupling Process CA -> CFD 

CFD -> CA 

CFD/CAMRAD loose coupling implemented via 
shell script with error checking  

motion.txt file (blade elastic motion) and 
 rotor_onerev.txt file (aero loads) common to 

FUN3D and OVERFLOW for coupling with CAMRAD 
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CFD/CA – Tight Coupling 
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•  FUN3D can also couple with CA codes in 
a tightly coupled manner 
–  Similar to a loosely coupled 

procedure, but... 
–  Frequent airloads-displacements data 

exchange between CFD and CA 
codes, .e.g., once per time step 

–  CFD airloads applied to CA directly 
–  Separated solution processes 

•  Support coupling with DYMORE and 
RCAS (less experience) 
–  All data transferred in memory 

through interfaces - no file I/O 
 

Time Step n 

CFD Airloads 
f n-1 

Interfaces 

FUN3D 

Create Surface Spline Functions 

Obtain Surface 
Motions Ts n 

Extract Rigid 
Motions Tr n 

Reposition 
Surface grid  

Ts nXs 

Move Overset 
Component 
grids Tr nX 

Solve Mesh Elasticity Xn 

CSD 
Motion data 

un 

Solve Flow Problem Qn 

CFD Airloads 
f n Boundary Slicing Procedures 

CFD/CSD tight-coupling algorithm 

Exit 
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•  Typically define the flow reference state for rotors based on the tip 
speed; thus in rotor.input, set Utip/Uref = 1.0 (data line 4) 

•  This way, Uinf/Uref (data line 1) is equivalent to Uinf/Utip, which is the 
Advance Ratio, and is usually specified or easily obtained 

•  Since the reference state corresponds to the tip, the mach_number in 
the fun3d.nml file should be the tip Mach number, and the 
reynolds_number should be the tip Reynolds number 

•  Nondimensional rotation rate: not input directly, but it is output to the 
screen; you might want to explicitly calculate it up front as a later check: 

                           (rad/s,       the rotor radius)                                                 

    and recall                                        (compressible) 
    so with                             and taking                 (             ) 

                                                (compressible) 

                                                (incompressible)       

  

 

 Rotor-Specific Nondimensional Input (1/2) 
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€ 

Ω* =Utip
* /R*

€ 

Ω=Ω*(Lref
* /Lref ) /aref

*

€ 

aref
* =Uref

* /Mref

€ 

Lref
* = R*

€ 

Ω = Mref (Utip
* /Uref

* ) /R

€ 

Ω =Utip
* /Uref

* /R
€ 

R*
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 Rotor-Specific Nondimensional Input (2/2) 
•  Nondimensional time step: 

    time for one rev:                                             (s) 

    and recall                                     (compressible) 

    so with                 we have 

                                                                                       (nondim time / rev)      

    For N steps per rotor revolution: 

                                                      (compressible) 

                                                      (incompressible) 

•  Note: the azimuthal change per time step is output to the screen in the 
Rotor info section. Make sure this is consistent, to a high degree of 
precision (say at least 4 digits), with your choice of N steps per rev – 
you want the blade to end up very close to 360 deg. after multiple revs! 

•  Formulas above are general, but recall we usually have ref = tip, at least 
for compressible flow 
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€ 

T* = 2π /Ω* = 2π R* /Utip
*

€ 

t = t*aref
* (Lref /Lref

* )

€ 

T = aref
* (R /R*)2π R* /Utip

* = 2π R /(MrefUtip
* /Uref

* )

€ 

Δ t = 2π R /(NMrefUtip
* /Uref

* )
€ 

Lref
* = R*

€ 

Δ t = 2π R /(NUtip
* /Uref

* )
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dci_gen Preprocessor (1/3) 
•  A rudimentary code to simplify rotorcraft setup (/utils/Rotocraft/dci_gen) 

–  Uses libSUGGAR++ routines 
–  Takes a single blade grid and a single fuselage / background grid 

(extending to far field) and assembles them into an N-bladed rotorcraft 
–  Requires rotor.input file (number of blades defined there) 
–  Creates the SUGGAR++ XML file (Input.xml_0) needed by FUN3D 
–  Generates, using libSUGGAR++ calls, the initial (t = 0) dci file and 

composite grid needed by FUN3D 
–  Generates the composite-grid “mapbc” files needed by FUN3D 
–  Component grids must be oriented as shown on following slide 

•  Blade must have any “as-built” twist incorporated 
•  If grids do not initially meet the orientation criteria, can use     

SUGGAR++ to rotate them before using dci_gen 
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dci_gen Preprocessor (2/3) 

HART II Component Grids 
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dci_gen Preprocessor (3/3) 
HART II Composite Grid 
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 rotor.input File 
•  Articulated rotors need only a subset of the data (manual defines variables) 

  # Rotors   Uinf/Uref  Write Soln   Force Ref Momment Ref    ! Below we set Uref = Utip 
         1       0.245        1500         1.0         1.0    ! Adv Ratio = Uinf/Utip 
=== Main Rotor =============================================  ! So here Uinf/Uref = AR 
Rotor Type   Load Type    # Radial    # Normal  Tip Weight 
         1           1          50         180         0.0 
  X0_rotor    Y0_rotor    Z0_rotor        phi1        phi2        phi3 
       0.0         0.0         0.0        0.00         0.0        0.00 
 Utip/Uref  ThrustCoff  TorqueCoff        psi0  PitchHinge      DirRot 
       1.0      0.0064        0.00         0.0      0.0466           0 
  # Blades   TipRadius  RootRadius  BladeChord   FlapHinge    LagHinge 
         4     26.8330      2.6666       1.741      0.0466      0.0466 
 LiftSlope  alpha, L=0         cd0         cd1         cd2 
      6.28        0.00       0.002        0.00        0.00 
    CL_max      CL_min      CD_max      CD_min       Swirl 
      1.50       -1.50        1.50       -1.50           0 
    Theta0  ThetaTwist     Theta1s     Theta1c  Pitch-Flap 
       0.0        0.00         0.0         0.0        0.00 
 # FlapHar       Beta0      Beta1s      Beta1c 
         0         0.0         0.0         0.0 
    Beta2s      Beta2c      Beta3s      Beta3c 
       0.0         0.0         0.0         0.0 
  # LagHar      Delta0     Delta1s     Delta1c 
         0         0.0         0.0         0.0 
   Delta2s     Delta2c     Delta3s     Delta3c 
      0.0          0.0         0.0         0.0 
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Key: 
Required for rigid and elastic 
Additional for untrimmed rigid 
Unused (must have a value)   
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 Input For Articulated-Blade Simulations (1/2) 
•  Except as noted, inputs pertain to both untrimmed/rigid-blades and 

trimmed/elastic blades 

•  Run as time-dependent, so will need to set time step as per slide 14 

•  Required additional fun3d.nml input 
  &global 
   moving_grid = .true. 
   slice_freq  = 1              (optional if rigid untrimmed) 
/ 
&rotor_data 
   overset_rotor = .true. 
/ 
&overset_data 
   overset_flag       = .true. 
   dci_on_the_fly     = .true.  (potentially optional if rigid) 
   dci_period         =  360    (assuming 1 deg. per time step)  
   reuse_existing_dci = .true.  
/ 
&nonlinear_solver_parameters 
   time_step_dpsi     = 1.0     (azimuthal deg. per time step) 
/                                
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 Input For Articulated-Blade Simulations (2/2) 
•  The moving_body.input file is somewhat simplified since much of the 

motion description is handled by rotor.input – all we need do is to 
define the moving bodies and provide the SUGGAR++ XML file if required 
  &body_definitions 
   n_moving_bodies     = 4               (e.g., for 4-bladed rotor) 
   body_name(1)        = ‘rotor1_blade1’ (same as in xml file) 
   n_defining_bndry(1) = 2 
   defining_bndry(1,1) = 3 
   defining_bndry(1,2) = 4 
   mesh_movement(1)    = ‘rigid+deform’ (or just ‘rigid’ for 

                                        for rigid blade case) 
   …      (etc. for blades 2-4) 
/ 
&composite_overset_mesh 
   input_xml_file = “Input.xml_0”  (potentially optional if rigid  
/                                   and have precomputed dci) 

•  Note: motion_driver not set in  &body_definitions (in contrast to 
any other moving-grid case); also no &forced_motion input 
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 CAMRAD Considerations 
•  User must set up basic CAMRAD II scripts; the RUN_LOOSE_COUPLING 

script provided with FUN3D requires 3 distinct, but related CAMRAD scripts 
–  basename_ref.scr  

•   Used to generate the reference motion data used by CAMRAD 
•   Set this file to use rigid blades; zero collective/cyclic; no trim 

–   basename_0.scr 
•  Used for coupling/trim cycle “0”  
•  Set up for elastic blades with trim; use CAMRAD aerodynamics 

exclusively (no delta airloads input); simplest aero model will suffice 
–  basename_n.scr 

•   Used for all subsequent coupling/trim cycles 
•   Set up for elastic blades with trim; use same simple CAMRAD 

aerodynamics but now with delta airloads input 
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DYMORE Considerations 
•  For coupling with DYMORE, fsi_tight_coupling.input file is 

required - both loose and tight coupling procedures 

 
•  You can put all DYMORE input decks under the FUN3D run directory - but 

suggest to create a subdirectory to store all DYMORE input decks (and 
outputs); in the above example, ./dymore5_baseline is the 
subdirectory 

•  Note that more info will be added to fsi_tight_coupling.input file 
for FUN3D/DYMORE multidisciplinary design optimization (referred to 
Multidisciplinary Design Session) 
 

22 FUN3D Training Workshop 
December 11-12, 2018  

./dymore5_baseline/uh60_4bl.dym        ! Main DYMORE input 
1.0                                    ! grid unit ratio 
1                                      ! ramping parameters for motions 



http://fun3d.larc.nasa.gov 

 Blade Surface “Slicing” 
•  Boundary surface (rotor blade) slicing is required for coupled CFD/CA 

simulations; also useful for rigid-blade cases -  this is what generates the 
data in rotor_1.onerev.txt, rotor_1.onerev_inertial.txt  

$slice_data 

 replicate_all_bodies    = .true.           ! do the following the same on all blades  

 output_sectional_forces = .false.          ! just lots of data we usually don’t need 

 tecplot_slice_output    = .false.          ! ditto 

 slice_x(1)              = .true.,          ! x=const slice – in original blade coords  

 nslices                 = -178,            ! no. slices; “-” means give start and delta 

 slice_location(1)       = 2.8175,          ! x-location to slice (starting slice) 

 slice_increment         = .13416666666     ! delta slice location each successive slice 

 n_bndrys_to_slice(1)    = 1,               ! 1 bndry to search 

 bndrys_to_slice(1,1)    = 2,               ! indicies:(slice,bdry) lumping made life easy 

 slice_frame(1)          = 'rotor1_blade1', ! ref. frame in which to slice - use body name 

 te_def(1)               = 20,              ! look for 2 corners in 20 aft-most segments 

 le_def(1)               = 30,       ! search 30 fwd-most pts for one most distant from TE  

 chord_dir(1)            = -1,              ! Recall goofy original blade coord system  

/ 
•  Note: “slicing” useful for applications other than rotorcraft; see website 
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 Untrimmed Rigid-Blade Simulations 
•  Overview of the basic steps 

1. Prepare rotor blade and fuselage grids, with proper axis orientation 

2. Set up the rotor.input file based on flight conditions 

3. Run the dci_gen utility to create a composite mesh and initial dci data 

4. Set up fun3d.nml and moving_body.input files 

5. Optionally set up the &slice_data namelist  in the fun3d.nml file 

6. Run the solver; the number of time steps required is case dependent – 
usually at least 3 revs for rigid blades 
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 Trimmed, Elastic-Blade Simulations (1/2) 
•  Overview of the basic steps; steps 1-4 are the same as for the untrimmed 

rigid-blade case; use of CAMRAD is assumed 
5. Set up the &slice_data namelist; set slice_freq = 1 not optional 
6.  In &rotor_data namelist, set 
comprehensive_rotor_coupling=‘camrad’ 

7. Set up the 3 CAMRAD run-script templates as per slide 21 
8. Set up the RUN_LOOSE_COUPLING run script (a c-shell script geared to 

PBS environments); user-set data is near the top – sections 1 and 2 
9. Set up the fun3d.nml_initial and fun3d.nml_restart files 

used by the run script; typically set the time steps in the initial file to 
cover 2 revs, and 2/Nblade revs in restart version 

10. Before using the run script make sure all items it needs are in place 
11. Number of coupling cycles required for trim will vary, but 8-10 is typical 

for low-moderate thrust levels; high thrust cases near thrust boundary 
may require 10-15; user judges acceptable convergence 
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 Trimmed, Elastic-Blade Simulations (2/2) 
•  Overview of the basic steps; steps 1-5 are the same as for CAMRAD case; 

use of DYMORE is assumed (loose coupling) 
6.  Set up &rotor_data namelist; set  
    comprehensive_rotor_coupling = ‘dymore’ 
  niters_cfd(1,1:2) = 360, 180 

- number of CFD time steps used for 1st and all subsequent loose-coupling 
iterations before airloads transferred to DYMORE 

7. Set up fsi_tight_coupling.input file as per slide 22 
8. Run DYMORE static analysis (no wind) 
9. Run DYMORE dynamic analysis (i.e., no delta airloads; using internal 

low-fidelity aerodynamics) to get initial blade deflections with trim 
10. Run FUN3D - total number of CFD time steps for all coupling iterations 

is controlled by steps parameter in &code_run_control namelist 
•  FUN3D runs tight coupling - in &rotor_data namelist, set 
comprehensive_rotor_coupling = ‘dymore_tight’; in 
fsi_tight_coupling.input file, set DYMORE input name accordingly 
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  RUN_LOOSE_COUPLING Directory Tree 
(CAMRAD) 
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 Postprocessing (utils/Rotorcraft/)  
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 Noninertial Reference Frame (1/2) 
•  For isolated, rigid an improvement in solution efficiency may be obtained 

by transforming to a coordinate system that rotates with the rotor 

•  FUN3D implements a very limited subset of possible noninertial frames: 

–  Constant rotation rate 

–  Free-stream flow limited to  

•  Quiescent (e.g., rotor in hover) 

•  Flow aligned with axis of rotor (e.g., ascending/descending rotor; 
prop in forward flight at 0 AoA) 

•  In this noninertial rotating frame, the flow is assumed steady 

•  Can be used in conjunction with overset grids to allow pitch/collective 
changes to rotor without regridding 

•  The noninertial capability has other limited applications in addition to 
rotors – e.g., aircraft in a steady loop 
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 Noninertial Reference Frame (2/2) 
•  fun3d.nml input for noninertial frame solutions (example for rotor 

spinning about z-axis) 
  &noninertial_reference_frame 
   noninertial = .true. 
   rotation_center_x = 0.0  !rotation axis passes through this pt. 
   rotation_center_y = 0.0 
   rotation_center_z = 0.0 
   rotation_rate_x   = 0.0 
   rotation_rate_y   = 0.0 
   rotation_rate_z   = 0.2 
/ 

•  The nondimensional rotation rate is determined as shown on slide 13 
•  Flow-visualization output (boundary, volume, sampling) will be relative to 

the noninertial frame 

30 FUN3D Training Workshop 
December 11-12, 2018  



http://fun3d.larc.nasa.gov 
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